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ABSTRACT. We presentsome relationsthat allowthe efficientapproximate inversionof

lineardifferentialoperatorswith rationalfunctioncoefficients.We employ expansions

in terms of a largeclassof orthogonal polynomial families,includingallthe classical

orthogonal polynomials. These familiesobey a simple 3-term recurrencerelationfor

differentiation,which impliesthat on an appropriatelyrestricteddomain the differenti-

ationoperator has a unique banded inverse.The inverseisan integrationoperator for

the family,and itissimply the tridiagonalcoefficientmatrix forthe recurrence.Since

inthese familiesconvolutionoperators (i.e.matrix representationsofmultiplicationby

a function)are banded forpolynomials,we are able to obtain a banded representation

for lineardifferentialoperators with rationalcoefficients.This leads to a method of

solutionof initialor boundary valueproblems that,besideshaving an operation count

that scaleslinearlywith the order oftruncationN, iscomputationallywellconditioned.

Among the applicationsconsideredisthe use ofrationalmaps forthe resolutionofsharp

interiorlayers.
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1. INTRODUCTION

The solution of constant coefficient ordinary differential equations with periodic bound-

ary conditions is especially simple in the Fourier spectral representation, since differen-

tiation of a smooth function is replaced by multiplication of its Fourier coefficient vector

by a diagonal matrix. An analogous property is shared by Hermite polynomial expan-

sions in unbounded domains. Other spectral representations give, in general, almost full

triangular differentiation matrices. However, for polynomial families such as the Cheby-

shev and Legendre, the matrices representing some commonly occurring operators, such

as the Laplace operator in various separable geometries, are known to be reducible to

simple, banded form through the use of appropriate banded preconditioners ([10, Ch.

10], [8], [16]). The origin of most of such simplifications is found in the fact that the

matrix operator for integration in any of the classical orthogonal polynomial families is

tridiagonal [7].

In this article we show how to exploit the properties of the operator of integration

to arrive at efficient spectral algorithms for the approximate solution of a large class of

ordinary differential equations of the form

n

(1) Lu = _"_(m_(;r,)Dk)u= f(;r) , • e _ = (a,b),
k=O

subject to the constraints

_'_ : C.

where mk are rational functions of 2, D k denotes k-th order differentiation with respect

to x, T is a linear functional of rank n, and c E R_. (Typically, the constraints are

boundary or initial conditions, but this is not necessary.)

The problem of approximating solutions of Ordinary or Partial Differential Equations

(0. or P.D.E.) by spectral methods, known as Galerkin approximation, involves the

projection onto the span of some appropriate set of basis functions, typically arising

as the eigenfunctions of a singular Sturm-Liouville (SL) problem. The members of the

basis may satisfy automatically the auxiliary conditions imposed on the problem, such

as initial, boundary or more general conditions. Alternatively, these conditions may be

imposed as constraints on the expansion coefficients, as in the Lanczos _'-method [13].

It is well known [4] that the eigenfunctions of certain singular Sturm-Liouville problems

allow the approximation of functions in C c° In, b] whose truncation error approaches zero

faster than any negative power of the number of basis functions (modes) used in the

approximation, as that number (order of truncation N) tends to oc . This phenomenon

is usually referred to as 'spectral accuracy' [10]. The accuracy of derivatives obtained by

direct, term-by-term differentiation of such truncated expansions naturally deteriorates

[4] but for low order derivatives and high enough order of truncation this deterioration

is negligible, compared to the restrictions in accuracy introduced by typical difference

approximations. Since results on the accuracy of spectral methods are well documented
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in the literature, we shall limit ourselves to the discussion of certain formal properties of

orthogonal polynomial famihes which allow algorithmic simplifications in their use. Facts

about orthogonal polynomials that we shall need can be found in any of the standard

references (e.g. [14], [17]).

Throughout, we assume that we are working with a family of polynomials {Qk}_ ° which

are orthogonal and complete over the inter_ (a,b) (here a and/or b can be infinite)
with respect to the nonnegative weight w(x). In the cases of interest, these are the

eigenfunctions of a Sturm-Liouville problem

(2) (p(x)Q_)'+ _kw(x)Qk= 0.

Then the Q_ form an orthogonal family as well, with nonnegative weight p(x) which

satisfies p(x) _ 0 as x -+ a, b. In this paper we focus exclusively on the classical orthog-

onal polynomials, i.e. the Jacobi, (special cases of which are the Chebyshev, Legendre

and Gegenbauer polynomials) Laguerre and Hermite polynomials, which axe the only

polynomial solutions of Sturm-Liouville problems of the form (2) [12]. We will assume
that the functions under consideration possess sufficient differentiability properties over

(a,b) and can be expressed as a series involving the Qk. See [4] for a discussion of the

convergence properties in the relevant function spaces.

We introduce the spaces Q_ by

Q_ - span{Qklm < k <_n}.

Our method constructs an approximate particular solution of (1) in a subspace of codi-

mension n, (e.g. (Q_-I)±) such that when n-th order differentiation is restricted to this

subspace it has a simple inverse. We also require that L be invertible when restricted to

this subspace and that T has full rank when restricted to the space of solutions to the

homogeneous problem, ((1) with f = 0).

Of key importance for our purposes is the requirement that differentiation or its in-

verse ('integration' in an appropriately restricted domain) must have banded form. For

example, the first derivative operator in the Chebyshev representation, D has elements

0, i>j,

1 O, i<j, i+j even

Di,j = _, O<i<j, i+j odd

9, i = O, j odd

Its inverse, when respective domains and ranges are appropriately restricted, is given

by:

°°° "" " /

00 01 0 02 0 .... 0

0 0 .
B=200

o o o o ;iik o°°.
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Now, DB = IQgo while BD = IQ_o. Clearly, DkB _ = IQ_o as well. However, BkD k # I.

If we apply k-fold differentiation to an arbitrary function, all information about the first

k coefficients in its Chebyshev expansion is lost. If however we restrict the action of D k

to the space Q_O, then B k is a left inverse provided its range is restricted to the same

space. We introduce the notation A(k) to denote a matrix A with its first k rows set to

zero. Thus, we have that B_k)D I' = IQ_. We note that these relationships carry over to

finite truncations if we replace the last column of B and the last k columns of B_k ) with

zeros, since D k : QN _..+QN-k while B_k ) : Q0N-_ --, Q[. It is easy to see that these

simple inversion (integration) operators originate in the recursions

Tk+l Tk-1 -- 2Tk k = 1,--- ,(3) k+l k-1 '
Tg=0 , T_=To,

T_'+2 2Ti' T_'_
(4) 4(k+ 2)(k+ 1) 4(k2- 1) + 4(k- 1)(k- 2) =Tk , k = 1,.-.,

T_'=O, T;'=O, T_'=4To,

and so on for higher derivatives. Clearly, B and B_2 ) are the matrices of recursion

coefficients for equations(3), (4) respectively. In the discussion we use the same symbol

for an infinite dimensional matrix operator and its finite dimensional truncation, where
the distinction is clear from the context.

More generally, if {Qk(z)}_ ° is a family of orthogonal polynomials, then a three term

recurrence for multiplication by the monomial z

1

(5) __, Q_:+,ak+,,k = xQk , k = 0,1,...
I=--1

follows easily from the orthogona/ity of the Qk [17]. Since the Q_ are orthogonal (with

weight p(x), as is easily seen by integrating (2) by parts), they also satisfy a relation of

form(5):
1

(6) _ Q'_÷,"_,,k= xQ'_ , k = o,1,...
I=--1

Therefore, by differentiating (5) and combining with (6), we arrive at [7]:

(7) E 'Qk+zbk+u, = Qk , k = 0,1,--.
l_----1

which allows the efficient inversion of differentiation to all orders. The coefficients in (7)

can be derived from those of the basic recurrence (5), which defines the family.
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The method we shall present in Section 3, explained in detail for 2nd order operators

but not hmited to them, relies on restricting the domain of D _ to the subspace QnN =

span{Qk} N, thus ensuring the existence of a unique inverse. Throughout we tacitly

assume that the operator LN, the N-th order Galerkin approximation to L, has rank

N - n when acting on elements of Q0N. Thus, the problem of solving the resulting

algebraic system for right hand sides restricted to Qy-_ has a solution containing n free

parameters. We moreover assume that the operator is nonsingular when restricted further

to Q_. Thus, the null space contains no element orthogonal to Q_-I. These assumptions

are not as restrictive as one might at first expect. The method is most effective when

the above problem needs to be solved repeatedly for several right-hand sides f and high

accuracy is desired. This type of problem arises, e.g. when the Navier-Stokes equations

are solved in a geometry in which the Laplace operator is separable, and the boundary

conditions are periodic in all directions except one. Common examples are provided by

the Laplace operator in various separable curvihnear coordinates, where expansions of

smooth functions in terms of eigenfunctions of the Laplacian in the bounded direction

do not possess good convergence properties.

In Sec.3 we give some examples of the inversion of the Laplacian in some common

geometries, including a disk and an annulus in cylindrical and helical coordinate systems.

The use of the method for initial value problems is demonstrated through a study of the

Airy equation, while the biharmonic equation analyzed in Sec. 4 provides an example for

a higher order problem. Also considered is the Stokes problem: here a coupled system

of second order equations is considered with boundary conditions given for only one.

The method is easily extended to cover this case. The Chebyshev polynomials are an

especially important family, because of their optima/approximation properties as well as

the applicability of the Fast Fourier Transform. Thus, most of our explicit calculations

are carried out for Chebyshev-Galerkin matrices. In Sec. 4 we carry out a detailed

conditioning analysis for typical problems. It is found that if the leading coefficient ran(x)

does not vanish in the interval under consideration, the method generically produces well

conditioned operators. Finally, in Sec. 5 we discuss how to use rational mappings to

stretch the coordinate system near points where the solution of a BVP exhibits rapid

variation, thus ensuring a more efficient representation of the solution without sacrificing

the speed of the method.

2. RECUI%SIVE DETERMINATION OF DERIVATIVES

Throughout we assume that {Qk(x)} o is a family of orthogonal polynomials in [a,b]

with weight w(z), such that if u 6 C°°[a, b] and if we set

N

=
o
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with

a° = _ _(x)Ok(x)_(=)dx, wherehk=110k IlL
N--_oo

then the error [I u - uN _ _ 0 faster than any negative power of N. This is for

example true for the eigenfunctions of certain singular Sturrn-LiouviLle problems [4].

We shall write D_v for the restriction of the n-th derivative operator with respect to z

on Q_ = span {Qk}0 N. We adopt the notation

oo oo

= D,_ x-' '50r_ _n(8) Dnu Z., kLCk = _ kQ_,
o 0

and we write fN = coI(_) E R N+I , (i = 0,1,..., N). In the sequel we will drop the

subscript N when the distinction between truncated and untruncated expansions is clear.

Also, as stated earlier, we will write A(k) for a matrix A whose first k rows have been set

equal to zero.

We now prove the following theorem, which is a special case of Theorem 2.2, but

because of its simplicity serves to explain ideas. In this form, the theorem applies, e.g.,

to the Legendre polynomials:

Theorem 2.1. If the family {Qk(z)} o satisfies the recurrence

(9)

with Q-1 - O, then

-Qk-l= f(k)Qk , k=O,l,--.Q£+,

'5_+1 '5L1 _
(10) f(k+ I) f(k-1) -'5o , k= 1,2,-..

Proof: Clearly,

so that

Q'_+,(:)= F_, /(,_)Qm(:)
m=O

m+k even

co oo

_,' = Z: _'kQk^°,_ E _IQ_
k=0 k=0

oo k-1

= _ _ fCmlO_
k=0 m=0

m+k odd

m=0 k=m+l

m+k odd
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and __nally
O0

^1

k=m+l
k+m odd

resulting in the recurrence claimed above.

Applying the formula of Theorem 2.1 repeatedly, we can derive similar recursions for

the inversion of higher derivatives as well. For example, for D 2 we have

(11)

_L2 (f(k + 1) + f(k- 1)) __2

+2) -¢t_f-_-:t--1Tf_)-_-k'-__. .---.-. - + f(k-1)f(k-2) =fi_ ' k=2,3,--.f(k+ 1)f(k

The above formulae lead to simple algorithms for the computation of derivatives of

functions expanded in terms of the Q's as well as for the solution of simple I. or B.V.P.s.

For example, the solution to the problem

can be found, if

in the form

while

OO

m=O

_k+1 k = 1, 2,...
/(k -I- 1) '

_t°= (a- _-'_°Q_(a)) /Q°(a)'m=_

Other simple linear B.V.P. of the form

Lung , Bu=I

can be solved efficiently by the inversion of banded matrices if the D.O. L has constant

coefficients. For example, let

d 2

(12) L -- dx 2 + X2.

In order to solve the B.V.P. (12) with B.C.

(13) u(a)=a , u(b)=

numerically, by assuming a truncated expansion for u(x) of order M, we set
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in eq. (II) for k = 2,..- ,M to get,together with the r-conditions

M

=
m=O

M

Z: =
rn----O

an almost pentadiagonal system (except for the first two rows which are full) for the

coefficients u °. This can be easily solved by LU decomposition. Thus the _'-conditions

are viewed as the first two equations, followed by the first M - 1 recurrence relations for

the determination of the uk , k = 2,-.- , M, with _°+1 - 0. This is equivalent to the

usual way of stating the r-method [10].

An alternative approach is suggested here. We specifically look for null vectors in the

form ek = Tk+uk , u_ E (Q_-I)± ,k= 1,... ,n-1. Then, ifup E (Q_-I)± is apaxticular

solution, the solution to the BVP can be writen as u = up + E akek, with ok satisfying a

n × n system. Note that if repeated solution of the system is required with different RHS,

the Uk need only be determined once, and there is a slight reduction in computational

overhead of our method when compared, e.g., with an efficient implementation of the

r-method. In fact, our method can effectively optimize the conditioning of a problem

by restricting attention to the most stable subspace. So, for example, if one is required

to solve the Poisson equation Au = -g in a region _, where ft is a 2-(3-)-dimensional

rectangle with one (two) periodic directions and one bounded direction several times by

adopting a Fourier-(Fourier)-Q expansion the problem decomposes to equations of type

(12) in the bounded direction for each Fourier mode. The LU decomposition can be

performed in a preprocessing stage and the results stored, resulting in only _ (10M)

operations per solution per Fourier mode at all subsequent stages. The cost is thus

comparable to solving the Poisson equation in the pure Fourier case! Similar results can

be easily derived for other O.D.O.s with constant coefficients.

A straightforward generalization of the previous formulas, which is useful in deriving

properties for the Chebyshev polynomials follows [7]:

Theorem 2.2. If the family {Qk(z)} o satisfies the recurrence

1

(14) l: 'Qk+_b_+_,k = Qk , k = 0,1,.--
l=--1

w/th Q-x -- O, then if f(z) = E_°=o ]kQk(z) is a sufficiently differentiable function

1

(15) E k= 1,2,.
/=--1

where the l-th derivative of the function f(z) has expansion coefficients f_t).



EFFICIENT SPECTRAL METHOD 9

Thus, even in this more general case, the expansion coefficients of a function can be

calculated from those of its derivative in O(N) operations. The more general form in

Theorem 2.2 will be useful dealing with Chebyshev polynomials, for which it agrees with

the usual normalizations. The proof is straightforward, but we give it for completeness:

Proof: We can introduce the vectors

](0 = (./o(0, ]_O,...)T

and

= (Qo,Q,,.-. ) , = Qi,-" ).
t ^

Then, f(x) = q_]k and ]' = q_fk. Also, by assumption, q'_B = q_ where B is the

coefficient matrix for recurrence (14). Combining we find

q'.(/- B/(') =o.

Assuming that the Q!k),i = 1,2,-.. are independent (true for all faznilies that satisfy

eq.(5) ), we find the relation claimed.

We note that the Chebyshev polynomials in the standard normalization satisfy (14)

with bk,k+l = (+l)/(2(k + 1)). Also the Jacobi polynomials in their standard normal-

ization satisfy a relation of type (14). Strictly speaking, Theorem 2.1 applies only to

the Legendre polynomials. (Although we can scale the symmetric Jacobi polynomials so

that (9) applies). In any case, (14) shows that integration is always banded, and of a

simple form (the recurrence coefficient matrix) for all the classical orthogonal polynomial

families. The discussion following Theorem 2.1 was given to clarify ideas, and in principle

could have been omitted.

We now focus on the operator D. This operator has a one-dimensional null space,

and if appropriately restricted, it has an inverse. An especially useful restriction involves

the subspace Q_o. In this space, the operator D has a well defined inverse, which we

will denote as B. Although D has a full upper-triangular matrix representation, B is

banded. Indeed, assuming the recursion in the form of Theorem 2.2, we have that B is

the coefficient matrix for the recurrence (14) (note that this matrix had zeroes in the

first row since Q_ = 0).

Similarly, D '_ must be restricted to Q_. Indeed, Af(D '_) = Q_-I, so that the operator

D" is nonsingular on Q_, the orthogonal complement of its null space, and it has a unique

inverse, denoted B_ I : Q_O __. Q_. Any two images of an element z E Q_O under n-fold

integration differ by an element of Q_-I. The specific form of B(_ / fixes that dement of

Q_-I to be the zero element. Thus, the solutions of

(16) Lu = __,(rak(:r,)Dk)u = f(z) , u E Q_,
k=O
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and

n

(17) Lu = __,(ra_(z)D_B'_,O) z = f(z), z 6 Q_,
k=O

are equivalent. Clearly, DkB_,) # B_fk). These operators differ since the second matrix
has zeroes in its first n - k rows while the first has some non-zero elements there.

Example: the operator B_2 ) : Q_O __, Q_ (for families that satisfy Theorem 2.1) is

and using

0 0 0 .•• 0 ...

0 0 0 ... 0 •..

0 _ +Lk.l__ 0 i ...
/OA f3f2fl /of4
0 I._!_ 0 _ +_l_!&0

ftf, f2faf4 f4f5

0 0 "•. 0 •'. 0
1 fk-t+fk+l0 0 ... 0

fk-_/k-i fk-_ f_ fk+i

we find that

0 0

0 0

0 0

"•" 0 '

• o• •

0 1

V __

0 fo 0 fo -.- 0

o 0 fl 0 ... f_
...... .o. "° -. , ..

o ........ i o" f__,
0 ............ 0

o °'" /

0

.... oo

,o°

f2k "'"

B(,) # DB_2 ) =

o Io 0 -fo o ... 0

flf2 1 0 ...... 0
0 -_
± 0 _! ...... 0
A f3

0 0 "'. "'. "" .... 0

0 ... 0 1--!-- 0 1 ...
fk-_ fk+_

In the general case, the operator D is hard to write explicitly, as it is the 'inverse' (in

the sense discussed above) of a general tridiagonal matrix• However, all that is needed in

our method is the expression for DkB_,_), which is identical to the matrix B_k_) except
for the first n - k rows which, in general, will contain some nonzero elements. These

elements are easy to compute however, as they can be expressed in terms of elements of

B(1) and the n x n prindpal submatrix of D. For example, the operator DB_2 ) for the
general case is identical to B0) except for the first row, whose elements are

rO_/0 (DB_2)) = d01 (blobll, hi21J1- b12b21, bl2(bll "+ b22), b12623,0, ... ,0).

Here, the elements bi.i for the classical orthogonal polynomials can be found in Table

3, together with the elements of the matrix A and other relevant quantities using the

standard notation [1]. Also, d01 is the corresponding entry of the differentiation matrix



EFFICIENT SPECTRAL METHOD 11

D, which is simply the derivative of Q1 expressed in terms of Q0. For example, for the

general Jacobi polynomials, 41 = a +/3 + 2, etc.

The relations for the Gegenbauer polynomials C(v) can be constructed from those of
the Jacobis since

r(a + 1)r(2a + n + _I)F(_,_ >c(:>
F(a + n + 1)F(2a + 1) _

where a = /3 = g - 1/2. Arrays are indexed from 0 to N, the maximum order of
truncation.

3. THE METHOD

We present now a method for the efficient inversion of operators resulting from the

spectral solution of the ODE

(18) Lu = _(rn.(x)Dk)u = f(x) , z e D.= (a,b),
k--O

subject to the constraints

_T'_ --- C.

The constraints are represented by a linear functional T of rank n.

We assume now that the matrices Mk, representing multiplication by ink, are banded.

This is for example the case if the original D.E. had rational coefficients. After multiplying

out the denominators, we are left with low order polynomial coefficients, and as a result

of the simple recursion operator A of multiplication by the monomial x (5), these have

banded representations as convolution operators. The simplest form is found if we expand

the resulting polynomial coefficients in terms of the Qk, then exploit the properties of

the banded operators of multiplication by Qk. In constructing an approximate solution,
we look for a solution of

LNuN -- fN ; UN E QNO , fN E Q N-".

with LN the Galerkin approximation to L, as usual [10]. The main result can be expressed
as follows:

Theorem 3.1. Assume that the Mk are banded. Also assume that Qo_ = A/'(LN)_ Q_. .

Then, if there is a solution UN, it can be written as a combination of an element w E

AF(LN) and an element up E QN such that LNup = f . The solution of the latter problem

can be performed in O( N) operations.

To construct the particular solution, let z = Dnup E QNo-_ so that up = B_)z E QN
is uniquely defined. Then the equation can be rewritten

(19) _(MkDk){fp = _ MkD'_B("_}Z = F,
k=0 k=0
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where we have introduced [/_, Z, i_ to represent the vectors of expansion coefficients. (We

use the same notation, however, for the differential and integral operators as for their

matrix representations.) Since a solution up of this problem was guaranteed to endst, z,

its n-th derivative, exists as well. Here we must note that in the case of weak solutions the

highest derivative must be handled carefully, but in this case convergence would be slow

and the method would be impractical. Now we address our main question: Is the new

system any easier to solve than the original? This is clearly true: the integration operators

are all banded, and to find u from z we perform one more banded matrix multiplication.

To simplify the notation, in the rest of the paper, unless otherwise stated, we will write

D j-_ - DJB_,_), j = 0...n - 1, where n is the order of the differential operator under

investigation.

Finally, we need to determine a convenient basis for the nullspace of the operator LN.
We define

e_=Qk+wk , wk_Q_,
with

Then

Livek = 0 =_ LNWk = -L.,vQ;:.

n--1

Tu = Yup + __, akTe_ = c
k=O

so that when the numbers T_l = (Tek)l are found, we have

n--1

akTkl= cZ-- (_'up)Z.
k=0

In other words, for every new RHS we simply need to solve the standard BVP for up,

then evaluate the quantities (Tup)t and solve an n × n system for the ak. The condition

of this system is known in advance.

Example: The radial Laplace equation for the n-th Fourier mode:

0( 0o)
This leads to the pentadiagonal matrix

(= -{-a)2I _- (= ÷ a)D -1 _ B_D-2.

Example: The helical Laplace equation for the n-th Fourier mode is

r 1 Jr-r20_ 2 &u - --?.2u :- f.

This is transformed to the (almost nine-diagonal) matrix

_(1 + _._)I + _(1 - ._)D-' - _(1 + .:_)D -_.
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Example: The initial value problem for the Airy equation

y"- a3(:r. - :r.o)y = 0 , y(0) = .355029403792807, y'(0) = .258819403792807a

has the solution

y(x) = Ai(a(x- Xo)).

the Airy function of the first kind. Here we include the parameters a, x0 E [-1, 1] in

order to scale the interval over which the problem is solved, since Chebyshev expansions

apply naturally over the interval [-1, 1]. For x > 0 the solutions decay exponentially

and the numerical algorithm converges rapidly. However, for x < 0 the solutions exhibit

oscillatory behavior with ever increasing frequency, and convergence can only be achieved

if sufficient modes axe include to resolve the most rapid oscillations present. In Figure 1

we show the solution to the problem with z0 = -1, a = 10 with N = 30, 40 respectively.

The first case is underresolved, and the maximum absolute error is O(10-2), while the

second case is barely resolved, and the error is O(10-s). A shght increase in the order

of truncation improves the solution dramatically. With N = 64, the error is already less
than 10 -11 .

Example: The two-dimensional Stokes problem is expressed by the system

(20) /kN¢ = --w,

(21) Hw = f

where AN is the non-periodic part of the Laplacian for the m-th Fourier mode in a two-

dimensional geometry with one non-periodic and one periodic direction; likewise, H is a

second order linear operator with rational coefficients. No conditions are given on w while

and _ are specified at x = il. Such a system results, e.g., from the time discretization

of the Stokes equations in appropriate two-dimensional domains. We consider projections

f -+ fN-4 E QNo-4, w _ WN-2 C QNo-2 and ¢ ---+ dgN C QNo. We determine a particular

solution for (21) as w v E Qy-_ and homogeneous solutions wk = Q_ + ilk, k = 0, 1, with

f2k E QN-2. The general solution for (21) is then

(22) _N-2 = wp + O.oWo+ a1_1.

The general solution of (20) can now be written as eN = ep + /30¢o + /91¢1 where

ek = Qk ÷ ffgk+2, k = 0, 1 (with _k+2 E QN) are the homogeneous solutions and ep =

II]p =_= Ot0_/0 71- (3_11II1 E QN is a particular solution with /Xg@p = --wp and Z_Nk_ k =

-wk, k = 0, 1. The boundary conditions can now be applied to ¢Y to produce a 4 x 4

system in the ak, ilk, k = 0, 1:

Aa = ¢,

with

J l,j-I-1-" , A2,_+1 = @j(-1)

= %,all) , &,j+l = %,d-l)



14 COUTSIAS, TORRES AND HAGSTROM

(j = 1,2,3,4) so that A need only be evaluated once, crk+l = ak , k = 0, 1 and _k+3 =

/gk , k = 0,1 and q_l = _b(1)- _p(1) etc. If this problem is solved as part of a time

integration of the Navier Stokes equations in a two-dimensionai region, the only functions

that need to be computed repeatedly are _v E QN and wp E Q2N-2.

0.4-

t
0.2-

&

I

0.0-

-0.2 -

I [ I
0.0 0.5 1.0 1.5 2.0

X

Figure 1: Computed solutions with 30 modes (triangles) and 40 modes (circles)

are plotted versus the exact solution of the Airy equation for a = 10.

Finally we comment on the solution of the BVP with arbitrary BC. In this case, we

need to determine the null space, and add an arbitrary combination of nullvectors to

the particular solution to satisfy any desired BC. An alternative form of our method can

also be considered. It is based on commuting the polynomials with the differential oper-

ators and multiplying on the left by the integration operator D_, so that the differential

operator matrix becomes banded. This approach is discussed in [7]. This is in fact the

7"-method, and various instances that have been worked out (eg. [10], [8]) are of this

type. Theorem 2.2 establishes the success of this approach as a consequence of the basic

recurrence relation (14).

However, other preconditioners may be available, depending on the special structure
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of the matrix operator LN [16]. The present method's main appeal, besides the fact that

a convergence analysis is available (see Sec. 4) is its simplicity and generality. Indeed,

the complicated expressions for the differential operators are entirely avoided. Of course

it should be expected that in special cases simpler forms and preconditioners might be

possible. An example of this is provided by the Laplace equation in a circle for which the

integration preconditioner leads to pentadiagonal forms while a simpler tridiagonal form

is in fact possible [16]. This is related to the special properties of the operator (x + 1)_.

We have not yet explored the flexibility of the choice of spaces, which may sometimes

lead to more efficient algorithms.

We must mention that the basic idea of the method presented here can be found in

the monograph by Fox and Parker [9]. They discuss the solution of ordinary differential

equations with low order polynomial coefficients by means of Chebyshev polynomial

expansions, and they show that integrating the given equation as many times as its order

leads to banded problems easily treatable by difference equation techniques. A variant of

this idea, employing the backwards recurrence relations for the coefficients of a function

in terms of the coefficients of its derivative, again for the Chebyshev polynomials, was

used by Clenshaw [5].

4. STABILITY AND CONVERGENCE

As differential operators are unbounded (in the usual norms), so are their difference

and spectral analogues under mesh refinement. Numerical studies have shown that the

spectral radii of Chebyshev and Legendre differentiation matrices are O(N) where N is

the dimension of the subspace. Moreover, these matrices are far from normal, so that

their norms can grow even faster. For example, the maximum norm of the differenti-

ation matrix, D, for a family satisfying the simple recursion (9) such as the Legendre

polynomials, satisfies the lower bound:

N-rn

(23) IlDll_o > m<_ f(rn) 2

From Table 3 we see that f(m) = O(m) so that the lower bound above is O(N_). This

lower bound grows accordingly with the order of the derivative being approximated. (For

example the second derivative can behave as O(N4).)

The poor conditioning of the matrices arising from spectral discretizations both limits

the accuracy of solutions, due to roundoff errors, and imposes severe limitations on the

time step for explicit solutions of dynamic problems [15] or on the convergence rate of

iterative solvers. It is well known that the reformulation of differential equations as inte-

gral equations often leads to bounded operators and wall-conditioned problems. As our

formulation of the discrete equations is based on integral operators, we also expect to ob-

tain well-conditioned linear systems. For some constant coefficient problems, Greengard

[11] has directly analyzed spectral approximations to equivalent integral equations and

demonstrated the gains in accuracy which can be attained. In this section we generalize
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and expand on Greengard's results to cover the algorithms we've proposed. We use the

stability estimates we obtain to prove convergence of the method.

4.1. Estimates of the condition number. We assume the differential equation takes

the form (18) where the coefficients mj(z) are polynomials and m0 is bounded away from

zero on [a, hi. Of course this last condition is required to avoid singularities in the solution,

where the spectral approximation itself may not be well-behaved. We concentrate on the

system (19), used to determine a particular solution:

(24) ( M° + _ MjD-j)j=I Z - AZ = ._,

where the Mj are the Galerkin approximations to multiplication by the polynomial co-

efficients and D -j = Dn-JB_}. The additional problem to be solved, involving the

boundary conditions, will be 0fmuch lower dimension, and its conditioning will depend

on the specific constraint conditions. We begin by estimating various norms of the in-

tegration operators. We view these, now, as operators on I2and l_. The bounds we

derive obviously extend to finite truncations. We make the following assumptions about

the orthogonal family, which are satisfied for proper normalizations of any of the Jacobi

polynomials, as well as the Hermite polynomials (see Table 3):

Assumption 4.1. The orthogonal family Qk satisfies:

(25) supk< Qk,Qk>9 = <
inf_ < Qk, Qk >9

(26) Ib ,l___ p > o.

Here, < , >_ denotes the weighted inner product defining the family. The best ez'ponent,

p, is 1 for the Jacobi family and 1/2 for the Hermite family.

(To use Table 3 to verify the statement concerning p, form the normalized families

by dividing Qk by V_ and note that bkj is transformed to bkj_.) We have the

following lemma describing the structure of the integration matrices:

Lemma 4.1. The matrices D -j are banded with bandwidth j, with the possible exception

of a finite number of elements in the first ] rows, and there ezists a constant Bj such

that I(D-J)k, I < 9jk-Jv.

= D-" coincides with (B_I)) _Proof: We first note that the integration operator B(_)

except for the first n rows which are zero. Since B_I } is tridiagonal with elements satisfying

(26), the result is immediate. For the other terms we use the fact that DB_) = I to
write:

(27) D -j = D=-JB(:)= D"-J((B_I))_ +G')= (B_I))j + D"-JC,
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where the nonzero elements of C axe simply the negatives of the nonzero elements of

(B_I))" in the first n rows. Since D "-j is upper triangular with nonzero elements only in

superdiagonals n - j _ oo we see that the nonzero elements of D ('_-j) C are restricted

to the first j rows and 2n + 1 columns. Since the result holds for (B_ll)J , the 1emma is
proved.

This leads immediately to the following theorem:

Theorem 4.1. The operators D -j : I2,_¢ _ I2,_ are compact.

Proof: The boundedness of the infinity norm follows directly from Lemma 4.1 and the

fact that the norm is equal to the maximum absolute row sum. For the 2-norm we have:

( _o ,z-.max(2n+l,i+J}gD- j [2) 1/2

(28)

(_ max( ,i+j} )
< x/_ + 1Bj lYz[=

\i=1 l=max(1,i-j)

___(2n + 1)BjllYll=.

1/2

To prove compactness it is sufficient to show that D -j can be approximated by a sequence

of bounded operators of finite rank, {D_}. For these we simply take the operators

defined by setting all rows below M to zero. Repeating the arguments above we have:

(29) lID -j - D_[12,_ <_ (2j + 1)/_jM -j' --_ O, M ---* c¢,

completing the proof.

We would now hke to bound the norms and condition numbers of the Galerkin poly-

nomial multiphcation matrices, Mk. We begin by showing that the Galerkin matrix is

nonsingulax if the zeroes of rnk lie outside [a, b]:

Theorem 4.2. Let Mk be the matrix representation of the Galerkin approximation to

multiplication by the degree q polynomial ink(x) relative to the orthogonal system { Q j( z ) }ou

on [a, b]. If the zeroes of mk lie outside [a, b], then Mk is nonsingular.

Proof: Suppose the contrary. Then there exists a nonzero polynomial, P, of degree N such
_._N+q

that rnkP = _i=t¢+I ckQk(x). We then have that rnkP is orthogonal to all polynomials of

degree less than or equal to N and has at least q zeroes (counting multiplicities) outside

[a, b]. This implies that rnkP has at most N zeroes of odd multiplicity in ( a, b). Let r_,

i = 1,..., s denote these zeroes. Then Six ) = l']_=l(z - r_) is a polynomial of degree

less than or equal to N such that rnkPS is of one sign on [a, b]. However, we also have

f_ wmkPSdz - 0 by the orthogonality of rnkP to polynomials of degree not more than

N. This is a contradiction, so P cannot exist.

An immediate corollary of this theorem is:

Corollary 4.1. The spectrum of Mk is contained within {y = ink(X), z E [a, b]}.
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Proof: Suppose Mk - _! is singular. Since Mk - hi is the Galerkin approximation to

multiplication by rnk - ,_, we conclude mk- A must have a zero in [a, hi, completing the

proof.

From the eigenvalues we can easily bound the norms:

Theorem 4.3. The matrices, Mk, satisl_the following bounds:

(30) maxI(l/mk(_))l.IIMkll__<'_Q:_t<,,bimaxIm_(_)l, IIMf'll_ -<'_'_=,_io,bJ

Proof: Let/t_/k denote the matrix representing the Galerkin approximation to multipli-

cation by mk relative to the orthonormal basis obtained by normalizing the Q's. Since

Mk is symmetric, its 2-norm and the 2-norm of its inverse are bounded, respectively, by

the largest and the inverse of the smallest eigenvalues (in absolute value). These are

in turn bounded by max=¢[<,,_,] l'_k(_)l and max=_[,,,b] I(1/"_,_(_))1 from Corollary 4.1. Let

R = diag(x/< Qi, Qi >_). Then Mk = R-IMkR. Taking norms yieldsthe finalresult.

We have shown that the system definingthe particularsolutionhas the form M0 + K

where, for regular problems, M0 has a bounded conditionnumber uniformly in N and K

approaches a compact operator. We have, then, the followingalternative:

Theorem 4.4. Either there ezist constants Co and C1 and an integer No such that for

all N > No and vectors, y, with Euclidean norm 1,

(31) G < IIAylI2< C1

or 0 is an eigenvalue of finite mult_licity for the Emiting system.

Proof. Suppose that zero is not an eigenvalue of the limiting system. This system can be

written in the form/tT/0(I + K) where K is compact and/_/0 is bounded with a bounded

inverse. Then zero is not an eij_envalue of I+K, which must then have a bounded inverse.

For A we have A = Mo(I + KN) where KN, when viewed as an operator on/2, satisfies
IIk--_NII-_ 0,N -_ _. Bythe Banachlena (S--/_N)= U-K +(k-kN)) winhave
a uniformly bounded inverse for N sufficiently large. It is also uniformly bounded above.

Since we have uniform upper and lower bounds on M0, the existence of C04 immediately
follows.

We remark that the zero eigenvalue will occur only if there exists a nontrivial solution

of the homogeneous differential equation which is orthogonal to all polynomials of degree

less than n. This is clearly not generic, and if it holds it can be remedied by looking for

particular solutions in a different subspace. In the future we plan to consider the case of

singular limiting problems in more detail, particularly in cases where the lead coefficient

is zero somewhere in [a, b].
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4.2. Error estimates. Given these bounds on the condition number of the hneax sys-

tem, a convergence result is easily proved. We explicitly assume that the original problem

has the following properties:

Assumption 4.2.

(a): The constraint/boundary operators Z satisfy an inequality of theform I_r_l _
II_ll_,,_.

(b): The forcing function, f(x), is in C_([a,b]), r > 1.

(c): If w is a solution of the homogeneous problem ((18) with f = O) satisfying

Tw = O or < w, Qk >_= O for aIl k = O, . . . ,n -1 then w = O.

We now prove a sequence of estimates of various parts of the error. For the continuous

problem, Assumption 4.2 implies the following (e.g. [6]):

(i): There exists a basis, .-1 C¢¢([a, the space{ui}i=o e b]), for of solutions to the

homogeneous problem taking the form uj = Qj +_2j, with _2j orthogonrd to Q_-I.

(ii): There exists a unique solution, u E Cn+r([a, b]), which can be written u(z) =
n--1 n--1

u,(x) + Ej=0 cjuj(z) with us orthogonal to Q0 •

(iii): The n x n matrix

T_= [ 7"uo Tul ... TUn-l]

is nonsingulax.

Let vs(x) denote the approximate particular solution, that is, the polynomial whose

expansion coefficients are given by D-2z, and vj(x) denote the approximate solution of

the homogeneous problem taking the form Qj +fij with fij orthogonal to Q_-I. We assume

that the right-hand side of the inhomogeneous equation is obtained via interpolation at

the relevant Gauss, Gauss-Radau or Gauss-Lobatto points. Let

(32) ro= ... ].
We then have:

Lemma 4.2. There exists No such that for N > No:

(i): There ezist constants Gt,_ such that:

Ilu_') - v}t)ll____G,,uN-", 0 < l, it < _, j = 0,..., n- 1.

(ii): There exist constants R_ such that:

IIT_- Toll_<R_N-", 0 ___it < _.

(iii): There exist constants Dz such that:

L--rIlu_z)- _')11_-<OtN_ Ilfll_,r, 0 < l < n.
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Proof We rely extensively on the approximation results listed in [4, Ch. 9]. Now

uj - vj = "hi - _j. Let _zj = _j,N + _j where '*j,N:'('_) E QNo-n and Cv_'_) E QN-n+l.°° Then:

(33) _ - 9_ = (aj,n - _j) + _i.

Estimates of the last term and its derivatives follow directly from results on approximation

by singular Sturm-Liouville eigenfunctions and the smoothness of _j. For the first, we

rewrite the expansion coefficients as B'_,oZ,,,j,N and B_),_,j and introduce ,g,,j = Z,,,j,N--

Zv,j. Let Z-_u,j,N = 2u,j,N&Q -- JEN+Q2u,j,N where Q is the bandwidth of the matrices A

and E represents extension by 0 of a vector to a longer vector. Denoting explicitly by

Am the matrix A associated with degree m + n - 1 truncations and by P,_ the restriction

of a vector of order larger than m to the m-vector containing its first m components we
have:

(34) Ay-n,g_,j = PN-,_AN-,_+Q2,,,j,N.

By the properties of A we have:

(35) 112o,jll:_<CII&, ,NII2.

Now Z_,j,N can be estimated by derivatives of _j. Therefore, we have estimates of the

nth derivative of the error in terms of the difference between 72__) and its projection into

Q0x-n. From [4] we directly obtain the estimate in (i). For lower derivatives we simply

apply the bounded operators D -i to Z_,j. For higher derivatives we apply the derivative

operators, which, though unbounded, still contribute only polynomial growth. To derive

(ii) we use the estimates in (i) and assumption (a) on the constraint operators.

Estimates of the particular solution follow the same pattern. Introduce fN, the poly-

nomial approximation to f used to compute vo, and fg, the orthogonal projection of f

into QoN-n. Write u! _) - (") - (_) Q_-_ w! _) ¢_¢'8,N-{-t0! n), where E and E QN-,_+I Let the

expansion coefficients of Us,N and v, be given by B_,_ 2s,u,N and B'_,_ Z,,,_ respectively. Let() ()

R. = 2_,_, - ,2_,,_ and 2.,,,,N = ,2_,_,,N+Q -- EN+Q,2,,_,,N. Then we have:

(36) AN_,_k, = + $'N- PN.

From the boundedness of the A's, the first term can be estimated in terms of []w(")[[o_ =

o(g -_)- Hw_-)n_,_. (This holds because u,,N was constructed by projecting u! ") into QoN-_

and applying integration operators.) The second is bounded by the sum of [[f- .fyU_ =

o(g-"). Hf][,,,," and ]If- fN[l_ = o(g½-"), nf[[_,_. The boundedness of A -_ yields then

implies (iii) for the nth derivative. The bounds for the lower derivatives then follow by

application of the bounded integration operators.

We are now in a position to prove:



EFFICIENT SPECTRAL METHOD 21

a=5 a=10 a=20

_, I_N-, I _2 _, I_N-, I -2 _, }_-, I _
32 46.3 .077 605 374 .007 53517 2992 .f00 29891

64 46.3 .077 605 374 .023 16015 2992 .042 71295

i28 46.3 .077 605 374 .023 16015 2992 .008 378611

256 46.3 .077 605 374 .023 16015 2992 .008 378611

512 46.3 .077 605 374 .023 160152992 008 378611
1024 46.3 .077 605 374 .023 16015 2992 .008 378611

TABLE i. Extreme singularvalues for I + a3(x + I)D -2.

Theorem 4.5. For some No < oc there exist constants Ht such that,/or all N > No,

the difference between the true solution, u, and the approximate solution, v, satisfies:

1-_ rI1_,¢zl-,o(t)ll_,_<HtN" Ilfll_,,, t= o,... ,n.

Proof:. We have,

n--I

(37) _ = _,+ 7: _juj,
j=0

geq = C --:[us,

n-i

(38) _ = _. + _ %_j, TJ = c- 7%,
j=0

Introducing e = u - v, v = 7 - 6 and taking the difference of the equations above we
obtain:

n--1

(39) _ =_. - .s + _ (7_(_ - .j) - _j_j), To_= (To- To)7- T(_. - _.).
j=0

Applying estimates (ii) and (iii) of Lemma 4.2 and the Banach lemma to the second

equation we obtain Ivl = o(g}-_)Hfll_,_. Substituting this into the first equation and

again using parts (i) and (iii) of lemma 4.2, we obtain the desired result.

We note that the estimate for the nth derivative is of optimal order for finite r. Of

course, for f 6 C°°([a, hi), we have convergence at a rate faster than any negative power
of N.

4.3. Direct computations of the condition number. Finally, we illustrate the con-

ditioning results by computing the singular values of the matrix used in the numerical

example in Section 3, namely Airy's equation with a Chebyshev discretization:

(40) A = I + a3(x + 1)D -2.

The singular values for various N and a were computed using the ]apack routine, dgesvd.

The results are presented in the table below.
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a = 1 a = 100 a = i0000

N _1I_N-11 ,_2_iI_N-II '_2_iI,,N-II '_
32 1.00.9951.011.31.6022.1769.9.0701004
64 1.00.9951.011.31.6022.1769.9.0701004
128 1.00._951.011.31.6022.176_.9.0701004
256 1.00._951.011.31.6022.1769._.0701004
512 1.00._951.011.31.6022.1769.9.0701004
1024 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004

TABLE 2. Extreme singularvaluesfor I - (_D -4.

We seethat the extreme singularvalues and, hence, the conditionnumber ofthe system

matrix are independent of N, once N is taken large enough to resolve the problem.

(The large condition number for large a simply reflects the large but bounded condition

number of the integralequation.) To i11ustratethe insensitivityof thisresultto the order

of the underlying differentialequation, we have carriedout the same computation for the

biharmonic; that is for A = I - aD -4, with the results tabulated below.

Here, the results are quite independent of the truncation, as the extreme singular values

are resolved with N = 32, so the only growth in the condition number is associated with

the growth of a.

5. RATIONAL MAPS FOR LAYER RESOLUTION

The Chebyshev approximation to a function with a region or regions of very rapid

variationmay exhibit Gibbs-type phenomena, that islarge amplitude oscillationsof the

error,unlessmany basis functionsaxe used. Therefore,adaptive computations using coor-

dinate mappings to stretchthese regionshave been proposed. Baylissand Turkel [3]have

made a comparative study of various functionalforms, allof which were transcendental

functions.

In order to be able to use our fast solvers,we consider rational maps. That is,we

directlysolve (i) in y space where:

P(v;,7)
(41) • - Q(v;_)'

the polynomials P and Q axe of low degree, and 7/is a parameter vector. In an adaptive

procedure, 7/would be chosen to minimize some measure of the error, for example the

error functional proposed by Bayliss and coworkers [2]. A very simple construction of

an appropriate map can be motivated in the following way: Let g(Y) = P/Q. The

convergence of the Chebyshev expansion (in Y) depends on the behavior of

d_ /dg___
(42) =,,_/ _ + ....
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This suggests that improved convergence will follow from making dg/dy small where

d_u/dx k is large. We imagine an underlying linear map (so that the limits of the com-

putational region will be [-1, 1]) stretched near a finite number of points, zj. This can

be accomplished by subtracting scaled and shifted multiples of the function:

ay +7

(43) h,(y;a,#,_) = 1+ #y2"

Note that his(0; a,/3, _/) - a and that the derivative approaches zero as #y2 _ oo. We

then propose:

(44) g(y) = Sy + C- _h,(y- y_;_,#j,_)
J

The number of terms in the sum, and, hence, the degree of the map and bandwidth of

the resulting matrices, depends on the number of layers present. Then, if S - aj is small

and #ii is large, enhanced resolution at g(yj) will be obtained.

We demonstrate the idea on the following simple boundary value problem:

(45) d2¢ de
e_-Sm2 -F x_'-_m= O, ¢(-}-1) :- 4-1.

This problem has the exact solution

/;¢(x) = -1 + e-_/(2_Idx,
1

which, for e small, exhibits a region of rapid transition near x = 0 whose width is 0(e-1/2).

We see below that for e small and even a large number of modes, there is a very strong

Gibbs-like behavior. We consider the rational map

2 A+y 2

(46) x = _--_y i -F y_'

which is derived from the general expression above, making use of the symmetry. In

particular, the derivative is minimized at y = 0 where its value is 2A/(A -I- 1). Under the

changeo__4ables, ¢(y) = ¢(_(y)), the equationbecomes:

(47) ,Ty_+ =(_)-_(Ty_)/(_) _=0, ¢(=E1)==E1.

We studied this equation for various parameter values. We found that with e = 10 -12,

a value of the parameter A of the map of the order of 10 -6 yielded the best results. This is

reasonable, as one might expect A = O(vf_) to match the scaling in the layer. We did not

systematically search for the optimal value. In Figure 2 we present the solutions obtained

for various numbers oJ_ modes, N, and mapping parameters, A. Note that A = 1 yields

the identity map, i.e. the case of standard Chebyshev approximation. With A = 1 and

N = 256 we see oscillations near the layer with am overshoot of about 18%. Increasing
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N to 32768, which was the largest value considered, had no eiTect on the amplitude of

the overshoot, but did contract the region of oscillation. With A _ 1, on the other hand,

we obtain reasonable results with many fewer nodes. For example, with A = 10 -6 and

N = 64 the overshoot is less tha_ 1%. Increasing N to 1024 and spending a bit more

effort optimizing the parameter reduces this to 3 × 10 -4.

t r I

Figure 2: Solutions for e = 10 -12.

It is clear, that there is no change in the essential (0(N)) amount of work needed to

solve the problem, although the bandwidth does increase by approximately a factor of

5. If an iteration were used for the minimization of some error functional, by shifting

the position of the shock and changing the magnification factors, each step would require
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the recomputation of the operator coefficients, and the solution of the problem. These

procedures axe of compaxable numerical cost, so that the desirable features of the method

axe essentially preserved under the change of variables.

It is worth noting that there axe limits to the capability of this method to concentrate

a ]axge fraction of the mesh in a small region. A simple calculation indicates that 9'(Y) =

O(e) in a y-interval of width x/_. To achieve a greater magnification one must use rational

maps of higher degree, which results in larger bandwidths. A more detailed study of the

properties of rational coordinate mappings is planned for the future.
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